//
Search
Duplicate
🎭

A unified masked autoencoder with patchified skeletons for motion synthesis

Authors
Esteve Valls Mascaró
Hyemin Ahn
Dongheui Lee
Venue
AAAI
Year
2024

Abstract

The synthesis of human motion has traditionally been addressed through task-dependent models that focus on specific challenges, such as predicting future motions or filling in intermediate poses conditioned on known key-poses. In this paper, we present a novel task-independent model called UNIMASK-M, which can effectively address these challenges using a unified architecture. Our model obtains comparable or better performance than the state-of-the-art in each field. Inspired by Vision Transformers (ViTs), our UNIMASK-M model decomposes a human pose into body parts to leverage the spatio-temporal relationships existing in human motion. Moreover, we reformulate various pose-conditioned motion synthesis tasks as a reconstruction problem with different masking patterns given as input. By explicitly informing our model about the masked joints, our UNIMASK-M becomes more robust to occlusions. Experimental results show that our model successfully forecasts human motion on the Human3.6M dataset while achieving state-of-the-art results in motion in betweening on the LaFAN1 dataset for long transition periods.